→ Берлинская лазурь. Берлинская лазурь в современном интерьере В качестве пигмента

Берлинская лазурь. Берлинская лазурь в современном интерьере В качестве пигмента

Краситель замечательного синего цвета с таким поэтическим названием появился в Германии около двухсот лет назад. Точных данных о времени и авторе его открытия не сохранилось: об этом не было никаких научных публикаций, сохранялся в тайне и способ получения нового вещества. Полагают, что берлинская лазурь была случайно получена в начале 18 в. в Берлине красильным мастером Дизбахом. В своем производстве он использовал поташ (карбонат калия К 2 СО 3 ) и однажды раствор поташа неожиданно дал с солями железа красивое синее окрашивание. При проверке оказалось, что поташ из этой партии был ранее прокален в сосуде, в котором была бычья кровь. Осадок, который давал этот поташ с солями железа, представлял собой после высушивания темно-синюю массу с красновато-медным металлическим блеском. Попытка использовать это вещество для окрашивания тканей оказалась удачной. Краска была относительно дешевой, неядовитой, устойчивой к слабым кислотам, а главное – она обладала исключительно интенсивным цветом. Например, для получения голубой краски достаточно было на 200 частей белил взять всего одну часть нового пигмента, т.е. в девять раз меньше, чем традиционного ультрамарина. Новая краска, названная берлинской лазурью и сулившая большие выгоды ее обладателям, быстро вытеснила прежний ультрамарин, ее использовали в красильном и печатном деле, для изготовления синих чернил, масляных и акварельных красок, а в смеси с желтыми пигментами можно было получить широкую гамму зеленых цветов. Неудивительно, что способ получения берлинской лазури долгое время держали в секрете.

Секрет был раскрыт спустя два десятилетия английским врачом, естествоиспытателем и геологом Джоном Вудвордом. Теперь краску мог получить каждый желающий: для этого надо было прокалить с карбонатом калия сухую кровь, полученную с боен, обработать плав водой, добавить к раствору железный купорос с алюмокалиевыми квасцами и, наконец, подействовать на смесь соляной кислотой. Позднее французский химик Пьер Жозеф Макёр установил, что вместо крови можно использовать рог, кожу, шерсть и другие животные остатки, но что при этом происходит, оставалось невыясненным.

Механизм химических процессов, приводящих к образованию берлинской лазури, в общих чертах стал понятен гораздо позднее, в 19 в., благодаря работам многих ученых, среди которых был виднейший немецкий химик

Юстус Либих . Животные остатки, и это было уже тогда хорошо известно, содержат азот и серу. Для получения красителя карбонат калия начали прокаливать при высокой температуре в больших чугунных сосудах, в которые еще специально добавляли железные опилки или стружки. В этих условиях карбонат калия частично превращался в цианид калия, а сера давала с железом сульфид. Если обработать такой плав горячей водой, то цианид калия прореагирует с сульфидом железа и образуется раствор желтой кровяной соли (гексацианоферрата(II) калия): 6KCN + FeS ® K 4 + K 2 S. Использование в этом процессе животных остатков объясняет тривиальное название (см . ТРИВИАЛЬНЫЕ НАЗВАНИЯ ВЕЩЕСТВ ) этого комплексного соединения железа – «кровяная соль»; немецкий химик 18 в. Андреас Сигизмунд Маргграф назвал ее «щелочью, воспламененной бычьей кровью». А в названии «цианид» был использован греческий корень (от греч. kyanos – голубой, лазурный). Впоследствии были разработаны «бескровные» методы получения берлинской лазури.

Дальнейшие операции получения берлинской лазури были довольно простыми, и их легко воспроизвести, исходя из желтой кровяной соли. Если к ее горячему водному раствору добавить раствор железного купороса, то выпадет белый осадок, который быстро синеет на воздухе в результате окисления кислородом воздуха. Чтобы ускорить окисление, применяли также хлор или азотную кислоту. Еще проще было получить берлинскую лазурь непосредственным смешением растворов желтой кровяной соли и солей

Fe 3+ . В таком случае не было необходимости проводить дополнительное окисление.

В зависимости от способа проведения этой реакции краситель получали либо в виде нерастворимого осадка, либо в виде коллоидного раствора, который получается, например, при промывании осадка большим количеством воды или в присутствии щавелевой кислоты. Коллоидный раствор получил название «растворимой берлинской лазури». Были у красителя и другие названия. Так, очищенное вещество в 19 в. поступало в продажу под названием «парижская лазурь», его смесь с желтой краской называли «прусской зеленью», а прокаливанием получали «жженую берлинскую лазурь» – красновато-коричневый порошок, мало отличающийся по составу от простого оксида железа Fe

2 O 3 . Можно было встретить и другие торговые названия берлинской лазури: прусская лазурь, железная лазурь, гамбургская синь, нейблау, милори и другие, но все они в своей основе содержали одно и то же вещество.

Однако со временем выяснилось, что краски на основе берлинской лазури не так уж хороши, как казались вначале: они очень неустойчивы по отношению к щелочам, под действием которых разлагаются с выделением гидроксида железа Fe(OH)

3 , и поэтому не пригодны для красок, имеющих щелочную реакцию, и для окраски по известковой штукатурке. Поэтому в настоящее время берлинская лазурь имеет лишь ограниченное практическое применение – ее используют, например, для получения печатной краски, синей копирки, подкрашивания бесцветных полимеров типа полиэтилена. Зато сама реакция образования берлинской лазури уже более 200 лет с успехом используется в аналитической химии. Еще в 1751 А.С.Маргграф с помощью этой чувствительной реакции обнаружил железо в различных соединениях щелочноземельных металлов, встречающихся в природе: известняке, флюорите, кораллах, костях и даже... в желчных камнях быков. А в 1784 ирландский химик Ричард Кирван впервые предложил использовать водный раствор гексацианоферрата(II) калия с точно известной концентрацией в качестве стандартного раствора для определения железа.

В 1822 немецкий химик Леопольд Гмелин окислением желтой кровяной соли хлором получил красную кровяную соль K

3 (в отличие от «желтой соли», она содержит железо в степени окисления +3). Раньше это вещество называли солью Гмелина или красной красильной солью. Оказалось, что раствор этой соли тоже дает вещество, окрашенное в интенсивный синий цвет, но только в реакции с солями Fe
2+ . Продукт реакции назвали турнбулевой синью (раньше писали и «турнбуллева», и «турнбуллова», а в Основах химии Д.И.Менделеева и в энциклопедии Брокгауза и Ефрона можно встретить «турнбульскую лазурь»). Впервые эта «синь» была получена только после открытия Гмелина и названа по имени одного из основателей фирмы «Артур и Турнбуль», которая в конце 18 в. занималась изготовлением химических продуктов для красильщиков в одном из предместий Глазго (Шотландия). Знаменитый английский химик Уильям Рамзай , первооткрыватель инертных газов, лауреат Нобелевской премии, предполагал, что турнбулеву синь открыл его дед – потомственный красильщик и компаньон фирмы «Артур и Турнбуль».

По внешнему виду турнбулева синь была очень похожа на берлинскую лазурь, и ее тоже можно было получать в виде нерастворимой и растворимой (коллоидной) формы. Особого применения этот синтез не нашел, так как красная кровяная соль дороже желтой. Вообще долгие годы эффективность способа получения «кровяных солей» была очень низкой. При прокаливании органических остатков азот, содержащийся в белках и нуклеиновых кислотах, терялся в виде аммиака, летучей синильной кислоты, различных органических соединений, и лишь 10–20% его переходило в продукт реакции – K

4 . Тем не менее, этот способ оставался единственным в течение почти 150 лет, до 1860-х, когда научились выделять цианистые соединения из доменного и коксового газов.

Комплексные ферроцианиды железа нашли широкое применение для качественного анализа растворов на присутствие даже очень малых количеств ионов Fe

2+ и Fe 3+ : синее окрашивание можно заметить, даже если в литре раствора содержится всего 0,7 мг железа! Соответствующие реакции приводятся во всех учебниках аналитической химии. Раньше (а иногда и сейчас) их записывали так: реакция на ионы Fe 3+ : 4FeCl 3 + 3K 4 ® Fe 4 3 + 12KCl (образуется берлинская лазурь); реакция на ионы Fe 2+ : 3FeCl 2 + 2K 3 ® Fe 3 2 + 6KCl (образуется турнбулева синь). Однако в 20 в. было установлено, что берлинская лазурь и турнбулева синь – это одно и то же вещество! Как же оно получается, и каков его состав?

Еще в 19 в. в результате многочисленных химических анализов было показано, что состав продуктов может зависеть как от соотношения исходных реагентов, так и от способа проведения реакции. Было ясно, что определение только элементного состава красителей не даст ответа на вопрос, что же получается на самом деле при взаимодействии ионов железа разной степени окисления с двумя гексацианоферратами калия. Нужно было применить современные методы установления состава неорганических соединений. При этом, в основном, исследовались растворимые формы обоих красителей состава KFe, которые легче было очистить. Когда в 1928 были измерены магнитные моменты, а в 1936 получены рентгенограммы порошков, стало ясно, что очищенные берлинская лазурь и турнбулева синь – это действительно одно и то же соединение, которое содержит два типа атомов железа в разных степенях окисления, +2 и +3. Однако различить в то время структуры KFe II и KFe III и установить таким образом истинное строение вещества было невозможно. Это удалось сделать только во второй половине 20 в. с помощью современных физико-химических методов исследования: оптической спектроскопии, инфракрасной спектроскопии и гамма-резонансной (мёссбауэровской) спектроскопии. В последнем случае были специально получены осадки, меченные нуклидами железа 57 Fe. В результате было установлено, что в различных цианидах железа атомы Fe II окружены шестью атомами углерода, а в ближайшем соседстве с атомами Fe III находятся только атомы азота. Это означает, что шесть цианидных ионов в красителе связаны всегда с атомами железа(II), то есть правильны формулы KFe III для растворимой формы и Fe 4 III 3 – для нерастворимой формы «лазури» или «сини», независимо от того, получены ли они из FeCl 2 и K 3 или из FeCl 3 и K 4 . Как же можно объяснить эти результаты? Оказывается, при получении турнбулевой сини, когда смешиваются растворы, содержащие ионы Fe 2+ и 3– , происходит окислительно-восстановительная реакция; реакция эта самая простая из всех окислительно-восстановительных процессов, поскольку в ходе ее не происходит перемещения атомов, а просто один электрон с иона Fe 2+ переходит к иону 3– , и в результате получаются ионы Fe 3+ и 4 . Нерастворимая форма берлинской лазури преподнесла еще один сюрприз: будучи полупроводником, она при очень сильном охлаждении (ниже 5,5 К) становится ферромагнетиком – уникальное свойство среди координационных соединений металлов.

А какие реакции шли при старинном способе получения берлинской лазури? Если смешать в отсутствие окислителей растворы железного купороса и желтой кровяной соли, то получится белый осадок – соль Эверитта, состав которой соответствует формуле K

2 Fe II . Эта соль очень легко окисляется и поэтому быстро синеет даже на воздухе, превращаясь в берлинскую лазурь.

До введения современной номенклатуры неорганических соединений многие из них имели множество названий, в которых впору было запутаться. Так, вещество с формулой K

4 называли и желтой кровяной солью, и железистосинеродистым калием, и ферроцианидом калия, и гексацианоферратом(II) калия, тогда как K 3 называли красной кровяной солью, или железосинеродистым калием, или феррицианидом калия, или гесацианоферратом(III) калия. Современная систематическая номенклатура использует последние названия в каждом ряду.

Обе кровяные соли в настоящее время входят в состав преобразователей ржавчины (они превращают продукты коррозии в нерастворимые соединения). Красную кровяную соли применяют в качестве мягкого окислителя (например, в отсутствие кислорода фенолы окисляются до свободных ароксильных радикалов); как индикатор при титровании, в фотографических рецептурах и как реагент для обнаружения ионов лития и олова. Желтую кровяную соль применяют при производстве цветной бумаги, как компонент ингибирующих покрытий, для цианирования стали (при этом ее поверхность насыщается азотом и упрочняется), как реагент для обнаружения ионов цинка и меди. Окислительно-восстановительные свойства этих соединений можно продемонстрировать на таком интересном примере. Желтая кровяная соль легко окисляется до красной растворами пероксида водорода: 2K

4 + H 2 O 2 + 2HCl ® 2K 3 + 2KCl + 2H 2 O. Но, оказывается, что с помощью этого же реактива можно снова восстановить красную соль до желтой (правда, на этот раз – в щелочной среде): 2K 3 + H 2 O 2 + 2KOH ® 2K 4 + 2H 2 O + O 2 . Последняя реакция – пример так называемого восстановительного распада пероксида водорода под действием окислителей. Илья Леенсон ЛИТЕРАТУРА Химия ферроцианидов . М., «Наука», 1971
И.А.Леенсон. 100 вопросов и ответов по химии . М., «АСТ – Астрель», 2002 (63, 35, 14, 72) HSV ( , , ) (205°, 100%, 43%)

¹ : Нормализовано к
² : Нормализовано к

История и происхождение названия

Точная дата получения берлинской лазури неизвестна. Согласно наиболее распространённой версии, она была получена в начале восемнадцатого века (1706 ) в Берлине красильщиком Дисбахом. В некоторых источниках его называют Иоганном Якобом Дисбахом (нем. Johann Jacob Diesbach ) . Интенсивный ярко-синий цвет соединения и место получения дали начало названию. С современной точки зрения, получение берлинской лазури состояло в осаждении гексацианоферрата (II) железа (II) путём добавления к «жёлтой кровяной соли» солей железа (II) (например, «железного купороса») и последующему окислению до гексацианоферрата (II) железа (III). Можно было обойтись и без окисления, если сразу добавлять к «жёлтой кровяной соли» соли железа (III).

Под названием «парижская лазурь» одно время предлагалась очищенная «берлинская лазурь».

Получение

Метод приготовления держался в секрете до момента публикации способа производства англичанином Вудвордом в 1724 г.

Берлинскую лазурь можно получить, добавляя к растворам гексацианоферрата (II) калия («жёлтой кровяной соли») соли трёхвалентного железа. При этом в зависимости от условий проведения, реакция может идти по уравнениям:

Fe III Cl 3 + K 4 → KFe III + 3KCl,

или, в ионной форме

Fe 3+ + 4− → Fe −

Получающийся гексацианоферрат(II) калия-железа(III) растворим, поэтому носит название «растворимая берлинская лазурь» .

Структурная схема растворимой берлинской лазури (кристаллогидрат вида KFe III ·H 2 O) приведена на рисунке. Из неё видно, что атомы Fe 2+ и Fe 3+ располагаются в кристаллической решётке однотипно, однако по отношению к цианидным группам они неравноценны, преобладает тенденция к размещению между атомами углерода, а Fe 3+ - между атомами азота.

4Fe III Cl 3 + 3K 4 → Fe III 4 3 ↓ + 12KCl,

или, в ионной форме

4Fe 3+ + 3 4− → Fe III 4 3 ↓

Образующийся нерастворимый (растворимость 2·10 −6 моль/л) осадок гексацианоферрата (II) железа (III) носит название «нерастворимая берлинская лазурь» .

Приведённые выше реакции используются в аналитической химии для определения наличия ионов Fe 3+

Ещё один способ состоит в добавлении к растворам гексацианоферрата (III) калия («красной кровяной соли») солей двухвалентного железа. Реакция идёт также с образованием растворимой и нерастворимой формы (см. выше), например, по уравнению (в ионной форме):

4Fe 2+ + 3 3− → Fe III 4 3 ↓

Ранее считалось, что при этом образуется гексацианоферрат (III) железа (II), то есть Fe II 3 2 , именно такую формулу предлагали для «турнбулевой сини». Теперь известно (см. выше), что турнбулева синь и берлинская лазурь - одно и то же вещество, а в процессе реакции происходит переход электронов от ионов Fe 2+ к гексацианоферрат (III)- иону (валентная перестройка Fe 2+ + к Fe 3+ + происходит практически мгновенно, обратную реакцию можно осуществить в вакууме при 300 °C).

Эта реакция также является аналитической и используется, соответственно, для определения ионов Fe 2+ .

При старинном методе получения берлинской лазури, когда смешивали растворы жёлтой кровяной соли и железного купороса, реакция шла по уравнению:

Fe II SO 4 + K 4 → K 2 Fe II + K 2 SO 4 .

Получившийся белый осадок гексацианоферрата (II) калия-железа (II) (соль Эверитта) быстро окисляется кислородом воздуха до гексацианоферрата (II) калия-железа (III), то есть берлинской лазури.

Свойства

Термическое разложение берлинской лазури идёт по схемам:

при 200 °C:

3Fe 4 3 →(t) 6(CN) 2 + 7Fe 2

при 560 °C:

Fe 2 →(t) 3N 2 + Fe 3 C + 5C

Интересным свойством нерастворимой формы берлинской лазури является то, что она, будучи полупроводником , при очень сильном охлаждении (ниже 5,5 К) становится ферромагнетиком - уникальное свойство среди координационных соединений металлов.

Применение

В качестве пигмента

Цвет железной лазури изменяется от тёмно-синего к светло-синему по мере увеличения содержания калия. Интенсивный ярко-синий цвет берлинской лазури обусловлен, вероятно, одновременным наличием железа в различных степенях окисления, так как наличие в соединениях одного элемента в разных степенях окисления часто даёт появление или усиление цветности.

Темная лазурь жесткая, трудно смачивается и диспергируется, в накрасках лессирует и, всплывая, дает зеркальное отражение желто-красных лучей («бронзирует»).

Железная лазурь, благодаря хорошей укрывистости и красивому синему цвету находит широкое применение в качестве пигмента для изготовления красок и эмалей .

Также её применяют в производстве печатных красок, синей копирки , подкрашивания бесцветных полимеров типа полиэтилена .

Применение железной лазури ограничено её неустойчивостью по отношению к щелочам, под действием которых разлагается с выделением гидроксида железа Fe(OH) 3 . Она не может использоваться в композиционных материалах, имеющих в своем составе щелочные компоненты, и для окраски по известковой штукатурке .

В таких материалах в качестве синего пигмента, как правило используют органический пигмент голубой фталоцианиновый .

Лекарственное средство

Также используется как антидот (таблетки Ферроцин) при отравлении солями таллия и цезия , для связывания поступающих в желудочно-кишечный тракт радиоактивных нуклидов и тем самым препятствует их всасыванию. Код АТХ . Фармакопейный препарат Ферроцин был разрешен Фармкомитетом и Минздравом СССР в 1978 году для применения при остром отравлении человека изотопами цезия . Ферроцин состоит из 5% железо-гексацианоферрата калия KFe и 95% железо-гексацианоферрата Fe43.

Ветеринарный препарат

Для реабилитации земель, загрязненных после Чернобыльской катастрофы, был создан ветеринарный препарат на основе медицинского активного компонента Ферроцин - Бифеж . Внесен в Государственный реестр лекарственных средств для ветеринарного применения под номером 46-3-16.12-0827№ПВР-3-5.5/01571 .

Другие сферы применения

До того, как мокрое копирование документов и чертежей было вытеснено сухим, берлинская лазурь являлась основным образующимся пигментом в процессе светокопировании (так называемые «синьки», процесс цианотипии).

В смеси с маслянистыми материалами используется для контроля плотности прилегания поверхностей и качества их обработки. Для этого поверхности натирают указанной смесью, затем соединяют. Остатки нестёршейся синей смеси указывают более глубокие места.

Также используется как комплексообразующий агент, например, для получения пруссидов .

В XIX веке использовалась в России и Китае для подкрашивания спитой заварки, а также для перекраски чёрного чая в зелёный .

Токсичность

Не является токсичным веществом, хотя в её составе и есть цианидный анион CN − , так как он прочно связан в устойчивом комплексном гексацианоферрат 4− анионе (константа нестойкости этого аниона составляет лишь 4·10 −36).

См. также

Напишите отзыв о статье "Берлинская лазурь"

Литература

  • // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). - СПб. , 1890-1907.

Примечания

Ссылки

Отрывок, характеризующий Берлинская лазурь

Между тем с фронта другая колонна должна была напасть на французов, но при этой колонне был Кутузов. Он знал хорошо, что ничего, кроме путаницы, не выйдет из этого против его воли начатого сражения, и, насколько то было в его власти, удерживал войска. Он не двигался.
Кутузов молча ехал на своей серенькой лошадке, лениво отвечая на предложения атаковать.
– У вас все на языке атаковать, а не видите, что мы не умеем делать сложных маневров, – сказал он Милорадовичу, просившемуся вперед.
– Не умели утром взять живьем Мюрата и прийти вовремя на место: теперь нечего делать! – отвечал он другому.
Когда Кутузову доложили, что в тылу французов, где, по донесениям казаков, прежде никого не было, теперь было два батальона поляков, он покосился назад на Ермолова (он с ним не говорил еще со вчерашнего дня).
– Вот просят наступления, предлагают разные проекты, а чуть приступишь к делу, ничего не готово, и предупрежденный неприятель берет свои меры.
Ермолов прищурил глаза и слегка улыбнулся, услыхав эти слова. Он понял, что для него гроза прошла и что Кутузов ограничится этим намеком.
– Это он на мой счет забавляется, – тихо сказал Ермолов, толкнув коленкой Раевского, стоявшего подле него.
Вскоре после этого Ермолов выдвинулся вперед к Кутузову и почтительно доложил:
– Время не упущено, ваша светлость, неприятель не ушел. Если прикажете наступать? А то гвардия и дыма не увидит.
Кутузов ничего не сказал, но когда ему донесли, что войска Мюрата отступают, он приказал наступленье; но через каждые сто шагов останавливался на три четверти часа.
Все сраженье состояло только в том, что сделали казаки Орлова Денисова; остальные войска лишь напрасно потеряли несколько сот людей.
Вследствие этого сражения Кутузов получил алмазный знак, Бенигсен тоже алмазы и сто тысяч рублей, другие, по чинам соответственно, получили тоже много приятного, и после этого сражения сделаны еще новые перемещения в штабе.
«Вот как у нас всегда делается, все навыворот!» – говорили после Тарутинского сражения русские офицеры и генералы, – точно так же, как и говорят теперь, давая чувствовать, что кто то там глупый делает так, навыворот, а мы бы не так сделали. Но люди, говорящие так, или не знают дела, про которое говорят, или умышленно обманывают себя. Всякое сражение – Тарутинское, Бородинское, Аустерлицкое – всякое совершается не так, как предполагали его распорядители. Это есть существенное условие.
Бесчисленное количество свободных сил (ибо нигде человек не бывает свободнее, как во время сражения, где дело идет о жизни и смерти) влияет на направление сражения, и это направление никогда не может быть известно вперед и никогда не совпадает с направлением какой нибудь одной силы.
Ежели многие, одновременно и разнообразно направленные силы действуют на какое нибудь тело, то направление движения этого тела не может совпадать ни с одной из сил; а будет всегда среднее, кратчайшее направление, то, что в механике выражается диагональю параллелограмма сил.
Ежели в описаниях историков, в особенности французских, мы находим, что у них войны и сражения исполняются по вперед определенному плану, то единственный вывод, который мы можем сделать из этого, состоит в том, что описания эти не верны.
Тарутинское сражение, очевидно, не достигло той цели, которую имел в виду Толь: по порядку ввести по диспозиции в дело войска, и той, которую мог иметь граф Орлов; взять в плен Мюрата, или цели истребления мгновенно всего корпуса, которую могли иметь Бенигсен и другие лица, или цели офицера, желавшего попасть в дело и отличиться, или казака, который хотел приобрести больше добычи, чем он приобрел, и т. д. Но, если целью было то, что действительно совершилось, и то, что для всех русских людей тогда было общим желанием (изгнание французов из России и истребление их армии), то будет совершенно ясно, что Тарутинское сражение, именно вследствие его несообразностей, было то самое, что было нужно в тот период кампании. Трудно и невозможно придумать какой нибудь исход этого сражения, более целесообразный, чем тот, который оно имело. При самом малом напряжении, при величайшей путанице и при самой ничтожной потере были приобретены самые большие результаты во всю кампанию, был сделан переход от отступления к наступлению, была обличена слабость французов и был дан тот толчок, которого только и ожидало наполеоновское войско для начатия бегства.

Наполеон вступает в Москву после блестящей победы de la Moskowa; сомнения в победе не может быть, так как поле сражения остается за французами. Русские отступают и отдают столицу. Москва, наполненная провиантом, оружием, снарядами и несметными богатствами, – в руках Наполеона. Русское войско, вдвое слабейшее французского, в продолжение месяца не делает ни одной попытки нападения. Положение Наполеона самое блестящее. Для того, чтобы двойными силами навалиться на остатки русской армии и истребить ее, для того, чтобы выговорить выгодный мир или, в случае отказа, сделать угрожающее движение на Петербург, для того, чтобы даже, в случае неудачи, вернуться в Смоленск или в Вильну, или остаться в Москве, – для того, одним словом, чтобы удержать то блестящее положение, в котором находилось в то время французское войско, казалось бы, не нужно особенной гениальности. Для этого нужно было сделать самое простое и легкое: не допустить войска до грабежа, заготовить зимние одежды, которых достало бы в Москве на всю армию, и правильно собрать находившийся в Москве более чем на полгода (по показанию французских историков) провиант всему войску. Наполеон, этот гениальнейший из гениев и имевший власть управлять армиею, как утверждают историки, ничего не сделал этого.
Он не только не сделал ничего этого, но, напротив, употребил свою власть на то, чтобы из всех представлявшихся ему путей деятельности выбрать то, что было глупее и пагубнее всего. Из всего, что мог сделать Наполеон: зимовать в Москве, идти на Петербург, идти на Нижний Новгород, идти назад, севернее или южнее, тем путем, которым пошел потом Кутузов, – ну что бы ни придумать, глупее и пагубнее того, что сделал Наполеон, то есть оставаться до октября в Москве, предоставляя войскам грабить город, потом, колеблясь, оставить или не оставить гарнизон, выйти из Москвы, подойти к Кутузову, не начать сражения, пойти вправо, дойти до Малого Ярославца, опять не испытав случайности пробиться, пойти не по той дороге, по которой пошел Кутузов, а пойти назад на Можайск и по разоренной Смоленской дороге, – глупее этого, пагубнее для войска ничего нельзя было придумать, как то и показали последствия. Пускай самые искусные стратегики придумают, представив себе, что цель Наполеона состояла в том, чтобы погубить свою армию, придумают другой ряд действий, который бы с такой же несомненностью и независимостью от всего того, что бы ни предприняли русские войска, погубил бы так совершенно всю французскую армию, как то, что сделал Наполеон.
Гениальный Наполеон сделал это. Но сказать, что Наполеон погубил свою армию потому, что он хотел этого, или потому, что он был очень глуп, было бы точно так же несправедливо, как сказать, что Наполеон довел свои войска до Москвы потому, что он хотел этого, и потому, что он был очень умен и гениален.
В том и другом случае личная деятельность его, не имевшая больше силы, чем личная деятельность каждого солдата, только совпадала с теми законами, по которым совершалось явление.
Совершенно ложно (только потому, что последствия не оправдали деятельности Наполеона) представляют нам историки силы Наполеона ослабевшими в Москве. Он, точно так же, как и прежде, как и после, в 13 м году, употреблял все свое уменье и силы на то, чтобы сделать наилучшее для себя и своей армии. Деятельность Наполеона за это время не менее изумительна, чем в Египте, в Италии, в Австрии и в Пруссии. Мы не знаем верно о том, в какой степени была действительна гениальность Наполеона в Египте, где сорок веков смотрели на его величие, потому что эти все великие подвиги описаны нам только французами. Мы не можем верно судить о его гениальности в Австрии и Пруссии, так как сведения о его деятельности там должны черпать из французских и немецких источников; а непостижимая сдача в плен корпусов без сражений и крепостей без осады должна склонять немцев к признанию гениальности как к единственному объяснению той войны, которая велась в Германии. Но нам признавать его гениальность, чтобы скрыть свой стыд, слава богу, нет причины. Мы заплатили за то, чтоб иметь право просто и прямо смотреть на дело, и мы не уступим этого права.
Деятельность его в Москве так же изумительна и гениальна, как и везде. Приказания за приказаниями и планы за планами исходят из него со времени его вступления в Москву и до выхода из нее. Отсутствие жителей и депутации и самый пожар Москвы не смущают его. Он не упускает из виду ни блага своей армии, ни действий неприятеля, ни блага народов России, ни управления долами Парижа, ни дипломатических соображений о предстоящих условиях мира.

В военном отношении, тотчас по вступлении в Москву, Наполеон строго приказывает генералу Себастиани следить за движениями русской армии, рассылает корпуса по разным дорогам и Мюрату приказывает найти Кутузова. Потом он старательно распоряжается об укреплении Кремля; потом делает гениальный план будущей кампании по всей карте России. В отношении дипломатическом, Наполеон призывает к себе ограбленного и оборванного капитана Яковлева, не знающего, как выбраться из Москвы, подробно излагает ему всю свою политику и свое великодушие и, написав письмо к императору Александру, в котором он считает своим долгом сообщить своему другу и брату, что Растопчин дурно распорядился в Москве, он отправляет Яковлева в Петербург. Изложив так же подробно свои виды и великодушие перед Тутолминым, он и этого старичка отправляет в Петербург для переговоров.
В отношении юридическом, тотчас же после пожаров, велено найти виновных и казнить их. И злодей Растопчин наказан тем, что велено сжечь его дома.
В отношении административном, Москве дарована конституция, учрежден муниципалитет и обнародовано следующее:
«Жители Москвы!
Несчастия ваши жестоки, но его величество император и король хочет прекратить течение оных. Страшные примеры вас научили, каким образом он наказывает непослушание и преступление. Строгие меры взяты, чтобы прекратить беспорядок и возвратить общую безопасность. Отеческая администрация, избранная из самих вас, составлять будет ваш муниципалитет или градское правление. Оное будет пещись об вас, об ваших нуждах, об вашей пользе. Члены оного отличаются красною лентою, которую будут носить через плечо, а градской голова будет иметь сверх оного белый пояс. Но, исключая время должности их, они будут иметь только красную ленту вокруг левой руки.
Городовая полиция учреждена по прежнему положению, а чрез ее деятельность уже лучший существует порядок. Правительство назначило двух генеральных комиссаров, или полицмейстеров, и двадцать комиссаров, или частных приставов, поставленных во всех частях города. Вы их узнаете по белой ленте, которую будут они носить вокруг левой руки. Некоторые церкви разного исповедания открыты, и в них беспрепятственно отправляется божественная служба. Ваши сограждане возвращаются ежедневно в свои жилища, и даны приказы, чтобы они в них находили помощь и покровительство, следуемые несчастию. Сии суть средства, которые правительство употребило, чтобы возвратить порядок и облегчить ваше положение; но, чтобы достигнуть до того, нужно, чтобы вы с ним соединили ваши старания, чтобы забыли, если можно, ваши несчастия, которые претерпели, предались надежде не столь жестокой судьбы, были уверены, что неизбежимая и постыдная смерть ожидает тех, кои дерзнут на ваши особы и оставшиеся ваши имущества, а напоследок и не сомневались, что оные будут сохранены, ибо такая есть воля величайшего и справедливейшего из всех монархов. Солдаты и жители, какой бы вы нации ни были! Восстановите публичное доверие, источник счастия государства, живите, как братья, дайте взаимно друг другу помощь и покровительство, соединитесь, чтоб опровергнуть намерения зломыслящих, повинуйтесь воинским и гражданским начальствам, и скоро ваши слезы течь перестанут».

ЛАЗУРЬ БЕРЛИНСКАЯ. Краситель замечательного синего цвета с таким поэтическим названием появился в Германии около двухсот лет назад. Точных данных о времени и авторе его открытия не сохранилось: об этом не было никаких научных публикаций, сохранялся в тайне и способ получения нового вещества. Полагают, что берлинская лазурь была случайно получена в начале 18 в. в Берлине красильным мастером Дизбахом. В своем производстве он использовал поташ (карбонат калия К 2 СО 3) и однажды раствор поташа неожиданно дал с солями железа красивое синее окрашивание. При проверке оказалось, что поташ из этой партии был ранее прокален в сосуде, в котором была бычья кровь. Осадок, который давал этот поташ с солями железа, представлял собой после высушивания темно-синюю массу с красновато-медным металлическим блеском. Попытка использовать это вещество для окрашивания тканей оказалась удачной. Краска была относительно дешевой, неядовитой, устойчивой к слабым кислотам, а главное – она обладала исключительно интенсивным цветом. Например, для получения голубой краски достаточно было на 200 частей белил взять всего одну часть нового пигмента, т.е. в девять раз меньше, чем традиционного ультрамарина. Новая краска, названная берлинской лазурью и сулившая большие выгоды ее обладателям, быстро вытеснила прежний ультрамарин, ее использовали в красильном и печатном деле, для изготовления синих чернил, масляных и акварельных красок, а в смеси с желтыми пигментами можно было получить широкую гамму зеленых цветов. Неудивительно, что способ получения берлинской лазури долгое время держали в секрете.

Секрет был раскрыт спустя два десятилетия английским врачом, естествоиспытателем и геологом Джоном Вудвордом. Теперь краску мог получить каждый желающий: для этого надо было прокалить с карбонатом калия сухую кровь, полученную с боен, обработать плав водой, добавить к раствору железный купорос с алюмокалиевыми квасцами и, наконец, подействовать на смесь соляной кислотой. Позднее французский химик Пьер Жозеф Макёр установил, что вместо крови можно использовать рог, кожу, шерсть и другие животные остатки, но что при этом происходит, оставалось невыясненным.

Механизм химических процессов, приводящих к образованию берлинской лазури, в общих чертах стал понятен гораздо позднее, в 19 в., благодаря работам многих ученых, среди которых был виднейший немецкий химик Юстус Либих . Животные остатки, и это было уже тогда хорошо известно, содержат азот и серу. Для получения красителя карбонат калия начали прокаливать при высокой температуре в больших чугунных сосудах, в которые еще специально добавляли железные опилки или стружки. В этих условиях карбонат калия частично превращался в цианид калия, а сера давала с железом сульфид. Если обработать такой плав горячей водой, то цианид калия прореагирует с сульфидом железа и образуется раствор желтой кровяной соли (гексацианоферрата(II) калия): 6KCN + FeS ® K 4 + K 2 S. Использование в этом процессе животных остатков объясняет тривиальное название (см . ТРИВИАЛЬНЫЕ НАЗВАНИЯ ВЕЩЕСТВ) этого комплексного соединения железа – «кровяная соль»; немецкий химик 18 в. Андреас Сигизмунд Маргграф назвал ее «щелочью, воспламененной бычьей кровью». А в названии «цианид» был использован греческий корень (от греч. kyanos – голубой, лазурный). Впоследствии были разработаны «бескровные» методы получения берлинской лазури.

Дальнейшие операции получения берлинской лазури были довольно простыми, и их легко воспроизвести, исходя из желтой кровяной соли. Если к ее горячему водному раствору добавить раствор железного купороса, то выпадет белый осадок, который быстро синеет на воздухе в результате окисления кислородом воздуха. Чтобы ускорить окисление, применяли также хлор или азотную кислоту. Еще проще было получить берлинскую лазурь непосредственным смешением растворов желтой кровяной соли и солей Fe 3+ . В таком случае не было необходимости проводить дополнительное окисление.

В зависимости от способа проведения этой реакции краситель получали либо в виде нерастворимого осадка, либо в виде коллоидного раствора, который получается, например, при промывании осадка большим количеством воды или в присутствии щавелевой кислоты. Коллоидный раствор получил название «растворимой берлинской лазури». Были у красителя и другие названия. Так, очищенное вещество в 19 в. поступало в продажу под названием «парижская лазурь», его смесь с желтой краской называли «прусской зеленью», а прокаливанием получали «жженую берлинскую лазурь» – красновато-коричневый порошок, мало отличающийся по составу от простого оксида железа Fe 2 O 3 . Можно было встретить и другие торговые названия берлинской лазури: прусская лазурь, железная лазурь, гамбургская синь, нейблау, милори и другие, но все они в своей основе содержали одно и то же вещество.

Однако со временем выяснилось, что краски на основе берлинской лазури не так уж хороши, как казались вначале: они очень неустойчивы по отношению к щелочам, под действием которых разлагаются с выделением гидроксида железа Fe(OH) 3 , и поэтому не пригодны для красок, имеющих щелочную реакцию, и для окраски по известковой штукатурке. Поэтому в настоящее время берлинская лазурь имеет лишь ограниченное практическое применение – ее используют, например, для получения печатной краски, синей копирки, подкрашивания бесцветных полимеров типа полиэтилена. Зато сама реакция образования берлинской лазури уже более 200 лет с успехом используется в аналитической химии. Еще в 1751 А.С.Маргграф с помощью этой чувствительной реакции обнаружил железо в различных соединениях щелочноземельных металлов, встречающихся в природе: известняке, флюорите, кораллах, костях и даже... в желчных камнях быков. А в 1784 ирландский химик Ричард Кирван впервые предложил использовать водный раствор гексацианоферрата(II) калия с точно известной концентрацией в качестве стандартного раствора для определения железа.

В 1822 немецкий химик Леопольд Гмелин окислением желтой кровяной соли хлором получил красную кровяную соль K 3 (в отличие от «желтой соли», она содержит железо в степени окисления +3). Раньше это вещество называли солью Гмелина или красной красильной солью. Оказалось, что раствор этой соли тоже дает вещество, окрашенное в интенсивный синий цвет, но только в реакции с солями Fe 2+ . Продукт реакции назвали турнбулевой синью (раньше писали и «турнбуллева», и «турнбуллова», а в Основах химии Д.И.Менделеева и в энциклопедии Брокгауза и Ефрона можно встретить «турнбульскую лазурь»). Впервые эта «синь» была получена только после открытия Гмелина и названа по имени одного из основателей фирмы «Артур и Турнбуль», которая в конце 18 в. занималась изготовлением химических продуктов для красильщиков в одном из предместий Глазго (Шотландия). Знаменитый английский химик Уильям Рамзай , первооткрыватель инертных газов, лауреат Нобелевской премии, предполагал, что турнбулеву синь открыл его дед – потомственный красильщик и компаньон фирмы «Артур и Турнбуль».

По внешнему виду турнбулева синь была очень похожа на берлинскую лазурь, и ее тоже можно было получать в виде нерастворимой и растворимой (коллоидной) формы. Особого применения этот синтез не нашел, так как красная кровяная соль дороже желтой. Вообще долгие годы эффективность способа получения «кровяных солей» была очень низкой. При прокаливании органических остатков азот, содержащийся в белках и нуклеиновых кислотах, терялся в виде аммиака, летучей синильной кислоты, различных органических соединений, и лишь 10–20% его переходило в продукт реакции – K 4 . Тем не менее, этот способ оставался единственным в течение почти 150 лет, до 1860-х, когда научились выделять цианистые соединения из доменного и коксового газов.

Комплексные ферроцианиды железа нашли широкое применение для качественного анализа растворов на присутствие даже очень малых количеств ионов Fe 2+ и Fe 3+ : синее окрашивание можно заметить, даже если в литре раствора содержится всего 0,7 мг железа! Соответствующие реакции приводятся во всех учебниках аналитической химии. Раньше (а иногда и сейчас) их записывали так: реакция на ионы Fe 3+ : 4FeCl 3 + 3K 4 ® Fe 4 3 + 12KCl (образуется берлинская лазурь); реакция на ионы Fe 2+ : 3FeCl 2 + 2K 3 ® Fe 3 2 + 6KCl (образуется турнбулева синь). Однако в 20 в. было установлено, что берлинская лазурь и турнбулева синь – это одно и то же вещество! Как же оно получается, и каков его состав?

Еще в 19 в. в результате многочисленных химических анализов было показано, что состав продуктов может зависеть как от соотношения исходных реагентов, так и от способа проведения реакции. Было ясно, что определение только элементного состава красителей не даст ответа на вопрос, что же получается на самом деле при взаимодействии ионов железа разной степени окисления с двумя гексацианоферратами калия. Нужно было применить современные методы установления состава неорганических соединений. При этом, в основном, исследовались растворимые формы обоих красителей состава KFe, которые легче было очистить. Когда в 1928 были измерены магнитные моменты, а в 1936 получены рентгенограммы порошков, стало ясно, что очищенные берлинская лазурь и турнбулева синь – это действительно одно и то же соединение, которое содержит два типа атомов железа в разных степенях окисления, +2 и +3. Однако различить в то время структуры KFe II и KFe III и установить таким образом истинное строение вещества было невозможно. Это удалось сделать только во второй половине 20 в. с помощью современных физико-химических методов исследования: оптической спектроскопии, инфракрасной спектроскопии и гамма-резонансной (мёссбауэровской) спектроскопии. В последнем случае были специально получены осадки, меченные нуклидами железа 57 Fe. В результате было установлено, что в различных цианидах железа атомы Fe II окружены шестью атомами углерода, а в ближайшем соседстве с атомами Fe III находятся только атомы азота. Это означает, что шесть цианидных ионов в красителе связаны всегда с атомами железа(II), то есть правильны формулы KFe III для растворимой формы и Fe 4 III 3 – для нерастворимой формы «лазури» или «сини», независимо от того, получены ли они из FeCl 2 и K 3 или из FeCl 3 и K 4 .

Как же можно объяснить эти результаты? Оказывается, при получении турнбулевой сини, когда смешиваются растворы, содержащие ионы Fe 2+ и 3– , происходит окислительно-восстановительная реакция; реакция эта самая простая из всех окислительно-восстановительных процессов, поскольку в ходе ее не происходит перемещения атомов, а просто один электрон с иона Fe 2+ переходит к иону 3– , и в результате получаются ионы Fe 3+ и 4 . Нерастворимая форма берлинской лазури преподнесла еще один сюрприз: будучи полупроводником, она при очень сильном охлаждении (ниже 5,5 К) становится ферромагнетиком – уникальное свойство среди координационных соединений металлов.

А какие реакции шли при старинном способе получения берлинской лазури? Если смешать в отсутствие окислителей растворы железного купороса и желтой кровяной соли, то получится белый осадок – соль Эверитта, состав которой соответствует формуле K 2 Fe II . Эта соль очень легко окисляется и поэтому быстро синеет даже на воздухе, превращаясь в берлинскую лазурь.

До введения современной номенклатуры неорганических соединений многие из них имели множество названий, в которых впору было запутаться. Так, вещество с формулой K 4 называли и желтой кровяной солью, и железистосинеродистым калием, и ферроцианидом калия, и гексацианоферратом(II) калия, тогда как K 3 называли красной кровяной солью, или железосинеродистым калием, или феррицианидом калия, или гесацианоферратом(III) калия. Современная систематическая номенклатура использует последние названия в каждом ряду.

Обе кровяные соли в настоящее время входят в состав преобразователей ржавчины (они превращают продукты коррозии в нерастворимые соединения). Красную кровяную соли применяют в качестве мягкого окислителя (например, в отсутствие кислорода фенолы окисляются до свободных ароксильных радикалов); как индикатор при титровании, в фотографических рецептурах и как реагент для обнаружения ионов лития и олова. Желтую кровяную соль применяют при производстве цветной бумаги, как компонент ингибирующих покрытий, для цианирования стали (при этом ее поверхность насыщается азотом и упрочняется), как реагент для обнаружения ионов цинка и меди. Окислительно-восстановительные свойства этих соединений можно продемонстрировать на таком интересном примере. Желтая кровяная соль легко окисляется до красной растворами пероксида водорода: 2K 4 + H 2 O 2 + 2HCl ® 2K 3 + 2KCl + 2H 2 O. Но, оказывается, что с помощью этого же реактива можно снова восстановить красную соль до желтой (правда, на этот раз – в щелочной среде): 2K 3 + H 2 O 2 + 2KOH ® 2K 4 + 2H 2 O + O 2 . Последняя реакция – пример так называемого восстановительного распада пероксида водорода под действием окислителей.

Илья Леенсон

Берлинская лазурь — это яркий синий пигмент, используется как краситель, носит разные названия, каждое из которых красивее предыдущего. Лазурь парижская и железная, синь железная и гамбургская, прусская синь, милори. Это лишь малая часть названий, под которыми данное вещество встречается.

История появления названия

Доподлинно о месте, где получена берлинская лазурь впервые, не известно. Предположительно, это случилось в начале 18 столетия в городе Берлине. Отсюда и название вещества. А получил его немецкий мастер Дизбах, который разрабатывал красящие вещества. Он экспериментировал с карбонатом калия и однажды раствор солей железа и поташ (второе название карбоната) дал неожиданный, просто великолепный синий цвет.

Чуть позже Дизбах обнаружил, что использовал прокаленный поташ, который находился в сосуде, испачканном бычьей кровью. Дешевый способ, которым была получена железная лазурь, а также ее устойчивость к кислотам, насыщенность оттенка и широта использования сулили огромные прибыли производителю. Неудивительно, что Дизбах сохранил в тайне, как производится берлинская лазурь. Получение ее через 20 лет раскрыл Джон Вудворд.

Способы получения

Рецепт Джона Вудворда: кровь животного прокалить с карбонатом калия, добавить туда воду и раствор железного купороса, в котором предварительно растворили алюминиевые квасцы. В смесь добавить немного кислоты, тогда произойдет образование берлинской лазури. Позже химик Пьер Жозеф Макёр из Франции доказал, что любая часть останков отлично заменяет кровь, результат получается тот же.

Сейчас произвести лазурь берлинскую можно с помощью другого, «бескровного» метода. К нагретой желтой кровяной соли, растворенной в воде, добавляется железный купорос в виде раствора. В осадок выпадает белое вещество, которое синеет при воздействии на него воздуха. Это и есть берлинская лазурь. Чтобы ускорить процесс синения белого осадка, можно добавить немного кислоты или хлора.

В 1822 году Леопольд Гмелин, немецкий химик, получил красную кровяную соль, эмпирическая формула которой K 3 , в ней степень окисления железа +3, а не +2, как в желтой кровяной соли. При реакции с сульфатом железа она также дает интенсивную синюю окраску. Полученное таким способом вещество в честь основателя фирмы «Артур и Турнбуль» назвали турнбулевой синью.

Только в XX веке доказали, что под разными названиями прячется одно вещество, полученное различными способами. Назовите вы его турнбулева синь или берлинская лазурь, формула будет одна и та же:

KFe III ·H 2 O,

где в кристаллической решетке атомы Fe 2+ стремятся разместиться между углеродными атомами, а Fe 3+ - между азотными.

Свойства

Парижская лазурь имеет множество оттенков от лазурного до темного, насыщенного синего. Причем чем большее количество ионов калия содержится, тем светлее будет цвет.

Укрывистость железной лазури разная и зависит от оттенка. Варьирует от 10 (у светлого) до 20 г на м. кв.

Берлинская лазурь не растворяется в воде, содержит цианистую группу, но при этом абсолютно безопасна для здоровья и не ядовита даже при попадании в желудок. Способность красящая весьма высокая, не выцветает под действием солнечных лучей. Выдерживает нагревание до 180°C и стойка к воздействию кислотами. Но практически мгновенно разлагается в щелочной среде.

Берлинская лазурь встречается как в коллоидной, так и в нерастворимой форме. Нерастворимая является полупроводником. Недавно было открыто еще одно интересное свойство кристалла — при охлаждении до 5,5°K он становится ферромагнетиком.

Применение

В 18-19 веках гамбургскую синь применяли при производстве синих красок. Но они оказались неустойчивыми и разрушались под действием щелочной среды. Именно поэтому берлинская лазурь и не подходит для окраски штукатурки.

Сегодня милори применяется не очень широко. Чаще всего ее используют в печати, подкрашивают ею и полимеры, в частности полиэтилен.

В медицине вещество применяется как антидот при отравлении радионуклидами цезия и таллия.

Используют его и в ветеринарии. Если животные получают ежедневно небольшое количество лазури, то радионуклиды не откладываются в молоке, мясе и ливере. Использовалось это свойство после Чернобыля на территории России, Украины и в Беларуси.

Берлинская лазурь
Ласкает до ожога,
А память ждет грозу
И ливня хоть немного.

Как было б хорошо
Ударить в бубен неба!
Мой прадед не дошел
И никогда здесь не был.

А в небе замер шар,
В душе гроза теснится.
Я целюсь не спеша,
Мой выстрел не случится.

Замечательная статья про мой любимый синий цвет в природе. Я вот и не знал что он появился вместе с зарождением жизни на Земле.

В наши дни торжества синтетических красителей мы, как правило, не осознаем, каким многоцветьем расцвечен мир окружающих нас вещей - красный, зеленый и синий цвета сплетаются в самые разнообразные оттенки, и нас уже не удивишь самим фактом цвета какого-нибудь предмета обихода или одежды. Мы разве что можем поцокать языком на какое-нибудь режущее наш эстетический вкус сочетание типа зеленого галстука с розовой рубашкой и голубым костюмом, но, в итоге, списать этот адский коктейль на желание человека самовыразиться.




Между тем так было не всегда - до XVIII века синий цвет был весьма в цене, синие пигменты были дороги, их расход тщательно контролировался, и среднестатистический горожанин или крестьянин тех времен мог наблюдать синеву только в небесах, водах или на гербах, скачущих по своим делам представителей высокородных фамилий (но даже не их свиты). Если посмотреть на произведения живописи, созданные до XVII века, мы с удивлением увидим там очень мало синих тонов. До определенного момента синие пигменты использовались лишь в иконописи или для окраски предметов одежды знати. Трудно поверить, но в те времена синий камзол был таким же маркером благосостояния, как в наши дни «Ролекс» на руке или «Майбах» в гараже.



Дело в том, что до определенного момента в Европе единственным пигментом, который использовался для изготовления синих красок, был ультрамарин, который в свою очередь получали из минерала ляпис лазури (лазурита). Названи ультрамарин а голубом глазу предполагает, что это сырье попадало в Европу «из-за далеких морей», если быть точнее с территории современных Афганистана и Пакистана. Нерегулярные поставки, риски, связанные с путешествием караванов приводили к чрезвычайной редкости синего пигмента, и, как следствие, его заоблачной, как голубые небеса, стоимости. Однако ситуация на рынке пигментов изменилась примерно в начале 1700-х годов с рождением в Германии нашего очередного замечательного вещества - одного из первых искусственных красителей - берлинской лазури.


если уж не нашел изорбражение Дисбаха, вот вам карминоносные червецы

Открытие берлинской лазури приписывают немецкому химику (а точнее специалисту по изготовлению красок для различных целей) Дисбаху. Личность это настолько легендарная, что мне не удалось найти ни одного изображения, этого человека. Как говорит легенда, Дисбах пытался получить тоже недешевый красный пигмент, перерабатывая шкурки карминоносных червецов (источников красного пигмента кошенили), но что-то, как часто бывало в те времена, пошло не так, и в результате загрязнения кошенили солями железа появилась устойчивая синяя окраска. Ценность нового пигмента сразу стала очевидной, особенно когда стало ясно, что он устойчив к влаге, воздуху и почти не меняется под воздействием света. Немаловажно и то, что цена нового пигмента была много меньше цены ультрамарина. Однако это не означало, что синий цвет вдруг стал доступен широким массам трудящихся - производство новой краски на первых порах было ограниченным из-за отсутствия широкой сырьевой базы (в смысле жуков), а сам метод получения этого замечательного вещества держали в тайне без малого два десятилетия.



Однако с жуками было все же проще, чем с поставками лазурита из Афганистана, и новый синий пигмент вскоре стали продавать в Европе под патриотическими названиями «прусский голубой» или «берлинский голубой», а мундиры прусской армии стали окрашивать в синий цвет. Экспорт берлинской лазури был налажен даже в Японию, где, видимо, было плохо и с афганским ультрамарином и с кошенильными червецами, и синий пигмент был тоже востребован. Если посмотреть на полотна, созданные живописцами после случайного открытия Дисбаха, можно увидеть, что синий цвет становится все более популярным.

Тем не менее, строение берлинской лазури многие годы и даже десятилетия оставалось загадкой - это замечательное вещество не стремилось раскрывать все свои секреты, правда производителям пигмента, возможно, эти секреты и не были интересны - им было достаточно, что они умеют получать синее кристаллическое вещество, которое можно продавать, получая при этом немалые барыши.



То, что это соединение относится к комплексным (или координационным) соединениям стало известно только после того, как Альфред Вернер разработал основы теории строения комплексных соединений. И хотя, точный цвет пигмента, в том числе, зависит и от того, какие примеси могут входить в его кристаллическую решетку, основу берлинской лазури представляет гексацианоферрат(II) железа(III) - Fe 4 3 ndash; в этом замечательном соединении содержатся атомы железа в двух различных степенях окисления - (+2) и (+3).



Гексацианоферратный фрагмент можно представит себе как октаэдр, в котором атом железа (+2) окружен шестью цианидными группами. Стоит отметить, что группа CN очень прочно связана с железом, не отрывается от него, и поэтому, в отличие от цианида калия, где связь межу калием и цианидом диссоциирует, высвобождая токсичный ион CN - , без проблем берлинская лазурь не токсична (правда это не значит, что стоит попробовать лизнуть синий пигмент на картинах XVIII века, выставленных в Дрезденской или какой-либо другой галерее). Эти октаэдры некоторыми из своих вершин связаны с ионами железа(+3), в оставшихся пустотах могут находиться молекулы воды или ионы щелочных металлов. Таким образом, ионы железа(+3) также находятся в октаэдрическом окружении, хотя и не таком регулярном, как ионы железа (+2). Это обстоятельство, в свою очередь, приводит к различию электронной конфигурации ионов железа, определяющему цвет кристаллов - при облучении берлинской лазури светом она поглощает световые колебания, соответствующие оранжевому цвету в результате такого явления как межатомный перенос заряда - при возбуждении светом электрон с иона железа(+2) переносится на ион железа(+3).

Результаты исследований геохимиков позволяют предположить, что Дисбах был не первый, кто получил берлинскую лазурь - она могла образоваться в добиотических условиях (из ионов железа в насыщенной электричеством аммиачно-метановой атмосфере). Более того, некоторые исследователи связывают берлинскую лазурь с появлением жизни - эксперименты показывают, что некоторые биологически активные соединения могли образоваться из циановодорода, высвобождающегося из берлинской лазури при ее выдерживании при pH12 и относительно высоких температурах (70-150°C) во влажной бескислородной атмосфере аммиака, воспроизводящей условия добиотической Земли.

Берлинская лазурь до сих пор может применяться в качестве синего пигмента, хотя со времени Дисбаха уже было разработано немалое количество синтетических красителей синего цвета, однако это не единственное ее использование. Например, берлинскую лазурь применяют для лечения людей, отравившихся ионами таллия или получивших в организм дозу ионов радиоактивного цезия. Пациент принимает капсулу с берлинской лазурью, и в его кишечнике наше замечательное соединение взаимодействует с опасными ионами, «засасывая» их в свою кристаллическую решетку. Эта адсорбция не позволяет организму реадсорбировать опасные ионы, и они с большей скоростью выводятся из организма - так в присутствии берлинской лазури время вывода цезия из организма понижается со 110 до 30 суток.

Итак, берлинская лазурь, обнаруженная случайно, совершенно замечательным образом когда-то перевернула отношение людей к синему цвету, сделав его доступным вплоть до дизайна военной формы, ну а сейчас не только не прекращает свою работу по окрашиванию, но и приобретает новые профессии.

 

 

Это интересно: