→ Теория преобразования графиков. Проект на тему "преобразование графиков функции". Построение графика функции вида y = - f(x)

Теория преобразования графиков. Проект на тему "преобразование графиков функции". Построение графика функции вида y = - f(x)

Преобразование графиков функций

В этой статье я познакомлю вас с линейными преобразованиями графиков функций и покажу, как с помощью этих преобразований из графика функции получить график функции

Линейным преобразованием функции называется преобразование самой функции и/или ее аргумента к виду , а также преобразование, содержащее модуль аргумента и/или функции.

Наибольшие затруднения при построении графиков с помощью линейных преобразований вызывают следующие действия:

  1. Вычленение базовой функции, собственно, график которой мы и преобразовываем.
  2. Определения порядка преобразований.

И менно на этих моментах мы и остановимся подробнее.

Рассмотрим внимательно функцию

В ее основе лежит функция . Назовем ее базовой функцией .

При построении графика функции мы совершаем преобразования графика базовой функции .

Если бы мы совершали преобразования функции в том же порядке, в каком находили ее значение при определенном значении аргумента, то

Рассмотрим какие виды линейных преобразований аргумента и функции существуют, и как их выполнять.

Преобразования аргумента.

1. f(x) f(x+b)

1. Строим график фунции

2. Сдвигаем график фунции вдоль оси ОХ на |b| единиц

  • влево, если b>0
  • вправо, если b<0

Построим график функции

1. Строим график функции

2. Сдвигаем его на 2 единицы вправо:


2. f(x) f(kx)

1. Строим график фунции

2. Абсциссы точек графика делим на к, ординаты точек оставляем без изменений.

Построим график функции .

1. Строим график функции

2. Все абсциссы точек графика делим на 2, ординаты оставляем без изменений:


3. f(x) f(-x)

1. Строим график фунции

2. Отображаем его симметрично относительно оси OY.

Построим график функции .

1. Строим график функции

2. Отображаем его симметрично относительно оси OY:


4. f(x) f(|x|)

1. Строим график функции

2. Часть графика, расположенную левее оси ОY стираем, часть графика, расположенную правее оси ОY Достраиваем симметрично относительно оси OY:

График функции выглядит так:


Построим график функции

1. Строим график функции (это график функции , смещенный вдоль оси ОХ на 2 единицы влево):


2. Часть графика, расположенную левее оси OY (x<0) стираем:

3. Часть графика, расположенную правее оси OY (x>0) достраиваем симметрично относительно оси OY:


Важно! Два главных правила преобразования аргумента.

1. Все преобразования аргумента совершаются вдоль оси ОХ

2. Все преобразования аргумента совершаются "наоборот" и "в обратном порядке".

Например, в функции последовательность преобразований аргумента такая:

1. Берем модуль от х.

2. К модулю х прибавляем число 2.

Но построение графика мы совершали в обратном порядке:

Сначала выполнили преобразование 2. - сместили график на 2 единицы влево (то есть абсциссы точек уменьшили на 2, как бы "наоборот")

Затем выполнили преобразование f(x) f(|x|).

Коротко последовательность преобразований записывается так:



Теперь поговорим о преобразовании функции . Преобразования совершаются

1. Вдоль оси OY.

2. В той же последовательности, в какой выполняются действия.

Вот эти преобразования:

1. f(x)f(x)+D

2. Смещаем его вдоль оси OY на |D| единиц

  • вверх, если D>0
  • вниз, если D<0

Построим график функции

1. Строим график функции

2. Смещаем его вдоль оси OY на 2 единицы вверх:


2. f(x)Af(x)

1. Строим график функции y=f(x)

2. Ординаты всех точек графика умножаем на А, абсциссы оставляем без изменений.

Построим график функции

1. Построим график функции

2. Ординаты всех точек графика умножим на 2:


3. f(x)-f(x)

1. Строим график функции y=f(x)

Построим график функции .

1. Строим график функции .

2. Отображаем его симметрично относительно оси ОХ.


4. f(x)|f(x)|

1. Строим график функции y=f(x)

2. Часть графика, расположенную выше оси ОХ оставляем без изменений, часть графика, расположенную ниже оси OX, отображаем симметрично относительно этой оси.

Построим график функции

1. Строим график функции . Он получается смещением графика функции вдоль оси OY на 2 единицы вниз:


2. Теперь часть графика, расположенную ниже оси ОХ, отобразим симметрично относительно этой оси:


И последнее преобразование, которое, строго говоря, нельзя назвать преобразованием функции, поскольку результат этого преобразования функцией уже не является:

|y|=f(x)

1. Строим график функции y=f(x)

2. Часть графика, расположенную ниже оси ОХ стираем, затем часть графика, расположенную выше оси ОХ достраиваем симметрично относительно этой оси.

Построим график уравнения

1. Строим график функции :


2. Часть графика, расположенную ниже оси ОХ стираем:


3. Часть графика, расположенную выше оси ОХ достраиваем симметрично относительно этой оси.

И, наконец, предлагаю вам посмотреть ВИДЕОУРОК в котором я показываю пошаговый алгоритм построения графика функции

График этой функции выглядит так:


Показательная функция - это обобщение произведения n чисел, равных a :
y(n) = a n = a·a·a···a ,
на множество действительных чисел x :
y(x) = a x .
Здесь a - фиксированное действительное число, которое называют основанием показательной функции .
Показательную функцию с основанием a также называют экспонентой по основанию a .

Обобщение выполняется следующим образом.
При натуральном x = 1, 2, 3,... , показательная функция является произведением x множителей:
.
При этом она обладает свойствами (1.5-8) (), которые следуют из правил умножения чисел. При нулевом и отрицательных значениях целых чисел , показательную функцию определяют по формулам (1.9-10). При дробных значениях x = m/n рациональных чисел, , ее определяют по формуле(1.11). Для действительных , показательную функцию определяют как предел последовательности:
,
где - произвольная последовательность рациональных чисел, сходящаяся к x : .
При таком определении, показательная функция определена для всех , и удовлетворяет свойствам (1.5-8), как и для натуральных x .

Строгая математическая формулировка определения показательной функции и доказательство ее свойств приводится на странице «Определение и доказательство свойств показательной функции ».

Свойства показательной функции

Показательная функция y = a x , имеет следующие свойства на множестве действительных чисел () :
(1.1) определена и непрерывна, при , для всех ;
(1.2) при a ≠ 1 имеет множество значений ;
(1.3) строго возрастает при , строго убывает при ,
является постоянной при ;
(1.4) при ;
при ;
(1.5) ;
(1.6) ;
(1.7) ;
(1.8) ;
(1.9) ;
(1.10) ;
(1.11) , .

Другие полезные формулы.
.
Формула преобразования к показательной функции с другим основанием степени:

При b = e , получаем выражение показательной функции через экспоненту:

Частные значения

, , , , .

На рисунке представлены графики показательной функции
y(x) = a x
для четырех значений основания степени : a = 2 , a = 8 , a = 1/2 и a = 1/8 . Видно, что при a > 1 показательная функция монотонно возрастает. Чем больше основание степени a , тем более сильный рост. При 0 < a < 1 показательная функция монотонно убывает. Чем меньше показатель степени a , тем более сильное убывание.

Возрастание, убывание

Показательная функция, при является строго монотонной, поэтому экстремумов не имеет. Основные ее свойства представлены в таблице.

y = a x , a > 1 y = a x , 0 < a < 1
Область определения - ∞ < x < + ∞ - ∞ < x < + ∞
Область значений 0 < y < + ∞ 0 < y < + ∞
Монотонность монотонно возрастает монотонно убывает
Нули, y = 0 нет нет
Точки пересечения с осью ординат, x = 0 y = 1 y = 1
+ ∞ 0
0 + ∞

Обратная функция

Обратной для показательной функции с основанием степени a является логарифм по основанию a .

Если , то
.
Если , то
.

Дифференцирование показательной функции

Для дифференцирования показательной функции, ее основание нужно привести к числу e , применить таблицу производных и правило дифференцирования сложной функции.

Для этого нужно использовать свойство логарифмов
и формулу из таблицы производных :
.

Пусть задана показательная функция:
.
Приводим ее к основанию e :

Применим правило дифференцирования сложной функции . Для этого вводим переменную

Тогда

Из таблице производных имеем (заменим переменную x на z ):
.
Поскольку - это постоянная, то производная z по x равна
.
По правилу дифференцирования сложной функции:
.

Производная показательной функции

.
Производная n-го порядка:
.
Вывод формул > > >

Пример дифференцирования показательной функции

Найти производную функции
y = 3 5 x

Решение

Выразим основание показательной функции через число e .
3 = e ln 3
Тогда
.
Вводим переменную
.
Тогда

Из таблицы производных находим:
.
Поскольку 5ln 3 - это постоянная, то производная z по x равна:
.
По правилу дифференцирования сложной функции имеем:
.

Ответ

Интеграл

Выражения через комплексные числа

Рассмотрим функцию комплексного числа z :
f(z) = a z
где z = x + iy ; i 2 = - 1 .
Выразим комплексную постоянную a через модуль r и аргумент φ :
a = r e i φ
Тогда


.
Аргумент φ определен не однозначно. В общем виде
φ = φ 0 + 2 πn ,
где n - целое. Поэтому функция f(z) также не однозначна. Часто рассматривают ее главное значение
.

Разложение в ряд


.

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Параллельный перенос.

ПЕРЕНОС ВДОЛЬ ОСИ ОРДИНАТ

f(x) => f(x) - b
Пусть требуется построить график функции у = f(х) - b. Нетрудно заметить, что ординаты этого графика для всех значений x на |b| единиц меньше соответствующих ординат графика функций у = f(х) при b>0 и на |b| единиц больше - при b 0 или вверх при b Для построения графика функции y + b = f(x) следует построить график функции y = f(x) и перенести ось абсцисс на |b| единиц вверх при b>0 или на |b| единиц вниз при b

ПЕРЕНОС ВДОЛЬ ОСИ АБСЦИСС

f(x) => f(x + a)
Пусть требуется построить график функции у = f(x + a). Рассмотрим функцию y = f(x), которая в некоторой точке x = x1 принимает значение у1 = f(x1). Очевидно, функция у = f(x + a) примет такое же значение в точке x2, координата которой определяется из равенства x2 + a = x1, т.е. x2 = x1 - a, причем рассматриваемое равенство справедливо для совокупности всех значений из области определения функции. Следовательно, график функции у = f(x + a) может быть получен параллельным перемещением графика функции y = f(x) вдоль оси абсцисс влево на |a| единиц при a > 0 или вправо на |a| единиц при a Для построения графика функции y = f(x + a) следует построить график функции y = f(x) и перенести ось ординат на |a| единиц вправо при a>0 или на |a| единиц влево при a

Примеры:

1.y=f(x+a)

2.y=f(x)+b

Отражение.

ПОСТРОЕНИЕ ГРАФИКА ФУНКЦИИ ВИДА Y = F(-X)

f(x) => f(-x)
Очевидно, что функции y = f(-x) и y = f(x) принимают равные значения в точках, абсциссы которых равны по абсолютной величине, но противоположны по знаку. Иначе говоря, ординаты графика функции y = f(-x) в области положительных (отрицательных) значений х будут равны ординатам графика функции y = f(x) при соответствующих по абсолютной величине отрицательных (положительных) значениях х. Таким образом, получаем следующее правило.
Для построения графика функции y = f(-x) следует построить график функции y = f(x) и отразить его относительно оси ординат. Полученный график является графиком функции y = f(-x)

ПОСТРОЕНИЕ ГРАФИКА ФУНКЦИИ ВИДА Y = - F(X)

f(x) => - f(x)
Ординаты графика функции y = - f(x) при всех значениях аргумента равны по абсолютной величине, но противоположны по знаку ординатам графика функции y = f(x) при тех же значениях аргумента. Таким образом, получаем следующее правило.
Для построения графика функции y = - f(x) следует построить график функции y = f(x) и отразить его относительно оси абсцисс.

Примеры:

1.y=-f(x)

2.y=f(-x)

3.y=-f(-x)

Деформация.

ДЕФОРМАЦИЯ ГРАФИКА ВДОЛЬ ОСИ ОРДИНАТ

f(x) => k f(x)
Рассмотрим функцию вида y = k f(x), где k > 0. Нетрудно заметить, что при равных значениях аргумента ординаты графика этой функции будут в k раз больше ординат графика функции у = f(x) при k > 1 или 1/k раз меньше ординат графика функции y = f(x) при k Для построения графика функции y = k f(x) следует построить график функции y = f(x) и увеличить его ординаты в k раз при k > 1(произвести растяжение графика вдоль оси ординат) или уменьшить его ординаты в 1/k раз при k
k > 1 - растяжение от оси Ох
0 - сжатие к оси OX


ДЕФОРМАЦИЯ ГРАФИКА ВДОЛЬ ОСИ АБСЦИСС

f(x) => f(k x)
Пусть требуется построить график функции y = f(kx), где k>0. Рассмотрим функцию y = f(x), которая в произвольной точке x = x1 принимает значение y1 = f(x1). Очевидно, что функция y = f(kx) принимает такое же значение в точке x = x2, координата которой определяется равенством x1 = kx2, причем это равенство справедливо для совокупности всех значений х из области определения функции. Следовательно, график функции y = f(kx) оказывается сжатым (при k 1) вдоль оси абсцисс относительно графика функции y = f(x). Таким образом, получаем правило.
Для построения графика функции y = f(kx) следует построить график функции y = f(x) и уменьшить его абсциссы в k раз при k>1 (произвести сжатие графика вдоль оси абсцисс) или увеличить его абсциссы в 1/k раз при k
k > 1 - сжатие к оси Оу
0 - растяжение от оси OY




Работу выполнили Чичканов Александр, Леонов Дмитрий под руководством Ткач Т.В, Вязовова С.М, Островерховой И.В.
©2014

Основные элементарные функции в чистом виде без преобразования встречаются редко, поэтому чаще всего приходится работать с элементарными функциями, которые получили из основных с помощью добавления констант и коэффициентов. Такие графики строятся при помощи геометрических преобразований заданных элементарных функций.

Рассмотрим на примере квадратичной функции вида y = - 1 3 x + 2 3 2 + 2 , графиком которой является парабола y = x 2 , которая сжата втрое относительно О у и симметрична относительно О х, причем сдвинутую на 2 3 по О х вправо, на 2 единицы по О у вверх. На координатной прямой это выглядит так:

Yandex.RTB R-A-339285-1

Геометрические преобразования графика функции

Применяя геометрические преобразования заданного графика получаем, что график изображается функцией вида ± k 1 · f (± k 2 · (x + a)) + b , когда k 1 > 0 , k 2 > 0 являются коэффициентами сжатия при 0 < k 1 < 1 , 0 < k 2 < 1 или растяжения при k 1 > 1 , k 2 > 1 вдоль О у и О х. Знак перед коэффициентами k 1 и k 2 говорит о симметричном отображении графика относительно осей, a и b сдвигают ее по О х и по О у.

Определение 1

Существует 3 вида геометрических преобразований графика :

  • Масштабирование вдоль О х и О у. На это влияют коэффициенты k 1 и k 2 при условии не равности 1 , когда 0 < k 1 < 1 , 0 < k 2 < 1 , то график сжимается по О у, а растягивается по О х, когда k 1 > 1 , k 2 > 1 , то график растягивается по О у и сжимается по О х.
  • Симметричное отображение относительно координатных осей. При наличии знака « - » перед k 1 симметрия идет относительно О х, перед k 2 идет относительно О у. Если « - » отсутствует, тогда пункт при решении пропускается;
  • Параллельный перенос (сдвиг) вдоль О х и О у. Преобразование производится при наличии коэффициентов a и b неравных 0 . Если значение a положительное, до график сдвигается влево на | а | единиц, если отрицательное a , тогда в право на такое же расстояние. Значение b определяет движение по оси О у, что значит при положительном b функция движется вверх, при отрицательном – вниз.

Рассмотрим решения на примерах, начиная со степенной функции.

Пример 1

Преобразовать y = x 2 3 и построить график функции y = - 1 2 · 8 x - 4 2 3 + 3 .

Решение

Представим функции таким образом:

y = - 1 2 · 8 x - 4 2 3 + 3 = - 1 2 · 8 x - 1 2 2 3 + 3 = - 2 x - 1 2 2 3 + 3

Где k 1 = 2 , стоит обратить внимание на наличие « - » , а = - 1 2 , b = 3 . Отсюда получаем, что геометрические преобразования производятся с растяжения вдоль О у вдвое, отображается симметрично относительно О х, сдвигается вправо на 1 2 и вверх на 3 единицы.

Если изобразить исходную степенную функцию, получим, что

при растягивании вдвое вдоль О у имеем, что

Отображение, симметричное относительно О х, имеет вид

а движение вправо на 1 2

движение на 3 единицы вверх имеет вид

Преобразования показательной функции рассмотрим на примерах.

Пример 2

Произвести построение графика показательной функции y = - 1 2 1 2 (2 - x) + 8 .

Решение.

Преобразуем функцию, исходя из свойств степенной функции. Тогда получим, что

y = - 1 2 1 2 (2 - x) + 8 = - 1 2 - 1 2 x + 1 + 8 = - 1 2 · 1 2 - 1 2 x + 8

Отсюда видно, что получим цепочку преобразований y = 1 2 x:

y = 1 2 x → y = 1 2 · 1 2 x → y = 1 2 · 1 2 1 2 x → → y = - 1 2 · 1 2 1 2 x → y = - 1 2 · 1 2 - 1 2 x → → y = - 1 2 · 1 2 - 1 2 x + 8

Получаем, что исходная показательная функция имеет вид

Сжимание вдвое вдоль О у дает

Растягивание вдоль О х

Симметричное отображение относительно О х

Отображение симметрично относительно О у

Сдвигание на 8 единиц вверх

Рассмотрим решение на примере логарифмической функции y = ln (x) .

Пример 3

Построить функцию y = ln e 2 · - 1 2 x 3 при помощи преобразования y = ln (x) .

Решение

Для решения необходимо использовать свойства логарифма, тогда получаем:

y = ln e 2 · - 1 2 x 3 = ln (e 2) + ln - 1 2 x 1 3 = 1 3 ln - 1 2 x + 2

Преобразования логарифмической функции выглядят так:

y = ln (x) → y = 1 3 ln (x) → y = 1 3 ln 1 2 x → → y = 1 3 ln - 1 2 x → y = 1 3 ln - 1 2 x + 2

Изобразим график исходной логарифмической функции

Производим сжимание строе по О у

Производим растягивание вдоль О х

Производим отображение относительно О у

Производим сдвигание вверх на 2 единицы, получаем

Для преобразования графиков тригонометрической функциинеобходимо подгонять под схему решения вида ± k 1 · f (± k 2 · (x + a)) + b . Необходимо, чтобы k 2 приравнивался к T k 2 . Отсюда получаем, что 0 < k 2 < 1 дает понять, что график функции увеличивает период по О х, при k 1 уменьшает его. От коэффициента k 1 зависит амплитуда колебаний синусоиды и косинусоиды.

Рассмотрим примеры решения заданий с преобразованиями y = sin x .

Пример 4

Построить график y = - 3 sin 1 2 x - 3 2 - 2 с помощью преобразований функции y=sinx.

Решение

Необходимо привести функцию к виду ± k 1 · f ± k 2 · x + a + b . Для этого:

y = - 3 sin 1 2 x - 3 2 - 2 = - 3 sin 1 2 (x - 3) - 2

Видно, что k 1 = 3 , k 2 = 1 2 , a = - 3 , b = - 2 . Так как перед k 1 имеется « - » , а перед k 2 - нет, тогда получим цепочку преобразований вида:

y = sin (x) → y = 3 sin (x) → y = 3 sin 1 2 x → y = - 3 sin 1 2 x → → y = - 3 sin 1 2 x - 3 → y = - 3 sin 1 2 (x - 3) - 2

Подробное преобразование синусоиды. При построении графика исходной синусоиды y = sin (x) получаем, что наименьшим положительным периодом считается T = 2 π . Нахождение максимума в точках π 2 + 2 π · k ; 1 , а минимума - - π 2 + 2 π · k ; - 1 , k ∈ Z .

Производится растягивание по О у втрое, значит возрастание амплитуды колебаний возрастет в 3 раза. T = 2 π - это наименьший положительный период. Максимумы переходят в π 2 + 2 π · k ; 3 , k ∈ Z , минимумы - - π 2 + 2 π · k ; - 3 , k ∈ Z .

При растягивании по О х вдвое получаем, что наименьший положительный период увеличивается в 2 раза и равняется T = 2 π k 2 = 4 π . Максимумы переходят в π + 4 π · k ; 3 , k ∈ Z , минимумы – в - π + 4 π · k ; - 3 , k ∈ Z .

Изображение производится симметрично относительно О х. Наименьший положительный период в данном случае не меняется и равняется T = 2 π k 2 = 4 π . Переход максимума выглядит как - π + 4 π · k ; 3 , k ∈ Z , а минимума – π + 4 π · k ; - 3 , k ∈ Z .

Производится сдвижение графика вниз на 2 единицы. Изменение наименьшего общего периода не происходит. Нахождение максимумов с перехождением в точки - π + 3 + 4 π · k ; 1 , k ∈ Z , минимумов - π + 3 + 4 π · k ; - 5 , k ∈ Z .

На данном этапе график тригонометрической функции считается преобразованным.

Рассмотрим подробное преобразование функции y = cos x .

Пример 5

Построить график функции y = 3 2 cos 2 - 2 x + 1 при помощи преобразования функции вида y = cos x .

Решение

По алгоритму необходимо заданную функцию привести к виду ± k 1 · f ± k 2 · x + a + b . Тогда получаем, что

y = 3 2 cos 2 - 2 x + 1 = 3 2 cos (- 2 (x - 1)) + 1

Из условия видно, что k 1 = 3 2 , k 2 = 2 , a = - 1 , b = 1 , где k 2 имеет « - » , а перед k 1 он отсутствует.

Отсюда получаем, что получится график тригонометрической функции вида:

y = cos (x) → y = 3 2 cos (x) → y = 3 2 cos (2 x) → y = 3 2 cos (- 2 x) → → y = 3 2 cos (- 2 (x - 1)) → y = 3 2 cos - 2 (x - 1) + 1

Пошаговое преобразование косинусоиды с графической иллюстрацией.

При заданной графике y = cos (x) видно, что наименьший общий период равняется T = 2 π . Нахождение максимумов в 2 π · k ; 1 , k ∈ Z , а минимумов π + 2 π · k ; - 1 , k ∈ Z .

При растягивании вдоль О у в 3 2 раза происходит возрастание амплитуды колебаний в 3 2 раза. T = 2 π является наименьшим положительным периодом. Нахождение максимумов в 2 π · k ; 3 2 , k ∈ Z , минимумов в π + 2 π · k ; - 3 2 , k ∈ Z .

При сжатии вдоль О х вдвое получаем, что наименьшим положительным периодом является число T = 2 π k 2 = π . Производится переход максимумов в π · k ; 3 2 , k ∈ Z ,минимумов - π 2 + π · k ; - 3 2 , k ∈ Z .

Симметричное отображение относительно О у. Так как график нечетный, то он не будет изменяться.

При сдвигании графика на 1 . Отсутствуют изменения наименьшего положительного периода T = π . Нахождение максимумов в π · k + 1 ; 3 2 , k ∈ Z , минимумов - π 2 + 1 + π · k ; - 3 2 , k ∈ Z .

При сдвигании на 1 наименьший положительный период равняется T = π и не изменен. Нахождение максимумов в π · k + 1 ; 5 2 , k ∈ Z , минимумов в π 2 + 1 + π · k ; - 1 2 , k ∈ Z .

Преобразования функции косинуса завершено.

Рассмотрим преобразования на примере y = t g x .

Пример 6

Построить график функции y = - 1 2 t g π 3 - 2 3 x + π 3 при помощи преобразований функции y = t g (x) .

Решение

Для начала необходимо привести заданную функцию к виду ± k 1 · f ± k 2 · x + a + b , после чего получаем, что

y = - 1 2 t g π 3 - 2 3 x + π 3 = - 1 2 t g - 2 3 x - π 2 + π 3

Отчетливо видно, что k 1 = 1 2 , k 2 = 2 3 , a = - π 2 , b = π 3 , а перед коэффициентами k 1 и k 2 имеется « - » . Значит, после преобразования тангенсоиды получаем

y = t g (x) → y = 1 2 t g (x) → y = 1 2 t g 2 3 x → y = - 1 2 t g 2 3 x → → y = - 1 2 t g - 2 3 x → y = - 1 2 t g - 2 3 x - π 2 → → y = - 1 2 t g - 2 3 x - π 2 + π 3

Поэтапное преобразование тангенсоиды с графическим изображением.

Имеем, что исходный график – это y = t g (x) . Изменение положительного периода равняется T = π . Областью определения считается - π 2 + π · k ; π 2 + π · k , k ∈ Z .

Сжимаем в 2 раза вдоль О у. T = π считается наименьшим положительным периодом, где область определения имеет вид - π 2 + π · k ; π 2 + π · k , k ∈ Z .

Растягиваем вдоль О х в 3 2 раза. Вычислим наименьший положительный период, причем равнялся T = π k 2 = 3 2 π . А область определения функции с координатами - 3 π 4 + 3 2 π · k ; 3 π 4 + 3 2 π · k , k ∈ Z , меняется только область определения.

Симметрия идет по сторону О х. Период не изменится в этот момент.

Необходимо симметрично отображать оси координат. Область определения в данном случае неизменна. График совпадает с предыдущим. Это говорит о том, что функция тангенса нечетная. Если к нечетной функции задать симметричное отображение О х и О у, тогда преобразуем до исходной функции.

Решение

Для начала необходимо перейти от арккосинуса к арксинусу при помощи обратных тригонометрических функций a r c sin x + a r c o cos x = π 2 . Значит, получим, что a r c sin x = π 2 - a r c cos x .

Видно, что y = a r c cos x → y = - a r c cos x → y = - a r c cos x + π 2 .

Поэтапное преобразование арккосинуса и графическое изображение.

График, данный по условию

Производим отображение относительно О х

Производим движение вверх на π 2 .

Таким образом, осуществляется переход от арккосинуса к косинусу. Необходимо произвести геометрические преобразования арксинуса и его графика.

Видно, что k 1 = 2 , k 2 = 1 3 , a = - 1 , b = 0 , где отсутствует знак « - » у k 1 и k 2 .

Отсюда получаем, что преобразования y = a r c sin x примет вид:

y = a r c sin (x) → y = 2 a r c sin (x) → → y = 2 a r c sin 1 3 x → y = 2 a r c sin 1 3 (x - 1)

Поэтапное преобразование графика арксинуса и графическое изображение.

График y = a r c sin x имеет область определения вида x ∈ - 1 ; 1 , тогда интервал y ∈ - π 2 ; π 2 относится к области значений.

Необходимо растянуть вдвое по О у, причем область определения останется неизменной x ∈ - 1 ; 1 , а область значений y ∈ - π ; π .

Растягивание по О х строе. Происходит расширение области определения x ∈ - 3 ; 3 , но область значений остается неизменной y ∈ - π ; π .

 

 

Это интересно: